Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
PLoS One ; 17(7): e0264566, 2022.
Article in English | MEDLINE | ID: covidwho-1962989

ABSTRACT

Current medical guidelines consider pregnant women with COVID-19 to be a high-risk group. Since physiological gestation downregulates the immunological response to maintain "maternal-fetal tolerance", SARS-CoV-2 infection may constitute a potentially threatening condition to both the mother and the fetus. To establish the immune profile in pregnant COVID-19+ patients, a cross-sectional study was conducted. Pregnant women with COVID-19 (P-COVID-19+; n = 15) were analyzed and compared with nonpregnant women with COVID-19 (NP-COVID-19+; n = 15) or those with physiological pregnancy (P-COVID-19-; n = 13). Serological cytokine and chemokine concentrations, leucocyte immunophenotypes, and mononuclear leucocyte responses to polyclonal stimuli were analyzed in all groups. Higher concentrations of serological TNF-α, IL-6, MIP1b and IL-4 were observed within the P-COVID-19+ group, while cytokines and chemokines secreted by peripheral leucocytes in response to LPS, IL-6 or PMA-ionomicin were similar among the groups. Immunophenotype analysis showed a lower percentage of HLA-DR+ monocytes in P-COVID-19+ than in P-COVID-19- and a higher percentage of CD39+ monocytes in P-COVID-19+ than in NP-COVID-19+. After whole blood polyclonal stimulation, similar percentages of T cells and TNF+ monocytes between groups were observed. Our results suggest that P-COVID-19+ elicits a strong inflammatory response similar to NP-COVID19+ but also displays an anti-inflammatory response that controls the ATP/adenosine balance and prevents hyperinflammatory damage in COVID-19.


Subject(s)
COVID-19 , Monocytes , Apyrase/immunology , Cross-Sectional Studies , Cytokines , Female , Humans , Interleukin-6 , Pregnancy , SARS-CoV-2
2.
J Cell Physiol ; 237(8): 3394-3407, 2022 08.
Article in English | MEDLINE | ID: covidwho-1905874

ABSTRACT

Purinergic signaling modulates immune function and is involved in the immunopathogenesis of several viral infections. This study aimed to investigate alterations in purinergic pathways in coronavirus disease 2019 (COVID-19) patients. Mild and severe COVID-19 patients had lower extracellular adenosine triphosphate and adenosine levels, and higher cytokines than healthy controls. Mild COVID-19 patients presented lower frequencies of CD4+ CD25+ CD39+ (activated/memory regulatory T cell [mTreg]) and increased frequencies of high-differentiated (CD27- CD28- ) CD8+ T cells compared with healthy controls. Severe COVID-19 patients also showed higher frequencies of CD4+ CD39+ , CD4+ CD25- CD39+ (memory T effector cell), and high-differentiated CD8+ T cells (CD27- CD28- ), and diminished frequencies of CD4+ CD73+ , CD4+ CD25+ CD39+ mTreg cell, CD8+ CD73+ , and low-differentiated CD8+ T cells (CD27+ CD28+ ) in the blood in relation to mild COVID-19 patients and controls. Moreover, severe COVID-19 patients presented higher expression of PD-1 on low-differentiated CD8+ T cells. Both severe and mild COVID-19 patients presented higher frequencies of CD4+ Annexin-V+ and CD8+ Annexin-V+ T cells, indicating increased T-cell apoptosis. Plasma samples collected from severe COVID-19 patients were able to decrease the expression of CD73 on CD4+ and CD8+ T cells of a healthy donor. Interestingly, the in vitro incubation of peripheral blood mononuclear cell from severe COVID-19 patients with adenosine reduced the nuclear factor-κB activation in T cells and monocytes. Together, these data add new knowledge to the COVID-19 immunopathology through purinergic regulation.


Subject(s)
5'-Nucleotidase , Apyrase , COVID-19 , T-Lymphocytes , 5'-Nucleotidase/metabolism , Adenosine/blood , Adenosine Triphosphate/blood , Annexins , Apyrase/metabolism , CD28 Antigens/metabolism , COVID-19/immunology , Cytokines/blood , GPI-Linked Proteins/metabolism , Humans , Leukocytes, Mononuclear/metabolism , Receptors, Purinergic , Signal Transduction , T-Lymphocytes/immunology
3.
J Med Virol ; 94(5): 2089-2101, 2022 05.
Article in English | MEDLINE | ID: covidwho-1626431

ABSTRACT

COVID-19 is a disease characterized by acute respiratory failure and is a major health problem worldwide. Here, we aimed to investigate the role of CD39 expression in Treg cell subsets in COVID-19 immunopathogenesis and its relationship to disease severity. One hundred and ninety COVID-19 patients (juveniles, adults) and 43 volunteers as healthy controls were enrolled in our study. Flow cytometric analysis was performed using a 10-color monoclonal antibody panel from peripheral blood samples. In adult patients, CD39+ Tregs increased with disease severity. In contrast, CD39+ Tregs were decreased in juvenile patients in an age-dependent manner. Overall, our study reveals an interesting profile of CD39-expressing Tregs in adult and juvenile cases of COVID-19. Our results provide a better understanding of the possible role of Tregs in the mechanism of immune response in COVID-19 cases.


Subject(s)
Apyrase , COVID-19 , T-Lymphocytes, Regulatory , Adult , Apyrase/biosynthesis , Apyrase/immunology , Apyrase/metabolism , COVID-19/immunology , COVID-19/metabolism , Forkhead Transcription Factors , Humans , Severity of Illness Index , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology
4.
Cells ; 10(9)2021 08 27.
Article in English | MEDLINE | ID: covidwho-1379972

ABSTRACT

There is increasing evidence for a link between inflammation and thrombosis. Following tissue injury, vascular endothelium becomes activated, losing its antithrombotic properties whereas inflammatory mediators build up a prothrombotic environment. Platelets are the first elements to be activated following endothelial damage; they participate in physiological haemostasis, but also in inflammatory and thrombotic events occurring in an injured tissue. While physiological haemostasis develops rapidly to prevent excessive blood loss in the endothelium activated by inflammation, hypoxia or by altered blood flow, thrombosis develops slowly. Activated platelets release the content of their granules, including ATP and ADP released from their dense granules. Ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1)/CD39 dephosphorylates ATP to ADP and to AMP, which in turn, is hydrolysed to adenosine by ecto-5'-nucleotidase (CD73). NTPDase1/CD39 has emerged has an important molecule in the vasculature and on platelet surfaces; it limits thrombotic events and contributes to maintain the antithrombotic properties of endothelium. The aim of the present review is to provide an overview of platelets as cellular elements interfacing haemostasis and inflammation, with a particular focus on the emerging role of NTPDase1/CD39 in controlling both processes.


Subject(s)
Antigens, CD/metabolism , Apyrase/metabolism , Inflammation/complications , Thrombosis/complications , Animals , Humans , Inflammation/blood , Nucleotides/metabolism , Platelet Activation , Signal Transduction , Thrombosis/blood
5.
Microb Pathog ; 153: 104779, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1062521

ABSTRACT

BACKGROUND: During viral infection, inhibitory receptors play a key role in regulating CD8 T-cell activity. The objective of this research was to investigate programmed cell death protein 1 (PD-1), T-cell immunoglobulin and mucin domain-containing protein-3 (TIM-3), and CD39 exhaustion markers in CD8 T cells of new coronavirus disease-2019 (COVID-19) patients. METHODS: A total of 44 patients with COVID-19 (17 subjects in a critical group and 27 patients in a non-critical group) and 14 healthy controls, who were admitted to Hospitals in Babol, were recruited to the study. In subjects' peripheral blood mononuclear cells (PBMCs), we compared the phenotype of CD8 T lymphocytes, expressing PD-1, TIM-3, or CD39, both alone and in various combinations. RESULTS: The findings showed that the percentage of CD8+ cells was significantly lower in patients. Critical and non-critical patients were more likely than healthy controls to have an escalated frequency of CD8+ TIM-3+, CD8+ CD39+, and CD8+ TIM-3+ CD39+ cells. No significant differences were observed between all groups in the CD8+ PD-1+ cell counts. There was also no difference between three groups regarding the counts of CD8+ TIM-3+ PD-1+, CD8+ PD-1+ CD39+, and CD8+ TIM-3+ PD-1+ CD39+ cells. The counts of non-exhausted cells were significantly lower in critical and non-critical individuals compared to the healthy individuals' value. CONCLUSION: Patients, infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), altered exhausted CD8 T lymphocytes with CD39 and TIM-3 exhaustion markers, which may account the dysregulated immune response found in COVID-19.


Subject(s)
Apyrase/biosynthesis , CD8-Positive T-Lymphocytes/immunology , COVID-19/pathology , Hepatitis A Virus Cellular Receptor 2/biosynthesis , Programmed Cell Death 1 Receptor/biosynthesis , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/analysis , Female , Humans , Iran , Lymphocyte Count , Male , Middle Aged , SARS-CoV-2/immunology , Young Adult
6.
Med Hypotheses ; 144: 110012, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-997289

ABSTRACT

The most serious health issue today is the rapid outbreak of Coronavirus Disease 2019 (COVID-19). More than 6,973,427 confirmed cases were diagnosed in nearly 213 countries and territories around the world and two international conveyances, causing globally over 400,000 deaths. Epidemiology, risk factors, and clinical characteristics of COVID-19 patients have been identified, but the factors influencing the immune system against COVID-19 have not been well established. Upon infection or cell damage, high amounts of adenosine triphosphate (ATP) are released from damaged cells, which serve as mediators of inflammation through purinergic cell surface receptor signaling. As a protective mechanism to prevent excessive damage to host tissue, adenosine counteracts ATP's effects by adenosine receptor stimulation to suppress the pro-inflammatory response. Adenosine is seen as a major obstacle to the efficacy of immune therapies, and the adenosinergic axis components are critical therapeutic targets for cancer and microbial infections. Pharmacologic inhibitors or antibodies specific to adenosinergic pathway components or adenosine receptors in microbial and tumor therapy have shown efficacy in pre-clinical studies and are entering the clinical arena. In this review, we provide a novel hypothesis explaining the potential for improving the efficiency of innate and adaptive immune systems by targeting adenosinergic pathway components and adenosine A2A receptor signaling for the treatment of COVID-19.


Subject(s)
Adenosine A2 Receptor Antagonists/therapeutic use , COVID-19 Drug Treatment , Pandemics , Receptor, Adenosine A2A/physiology , 5'-Nucleotidase/metabolism , Adaptive Immunity/drug effects , Adenosine A2 Receptor Antagonists/pharmacology , Adenosine Triphosphate/metabolism , Apyrase/metabolism , COVID-19/epidemiology , COVID-19/immunology , COVID-19/metabolism , GPI-Linked Proteins/metabolism , Humans , Immunity, Innate/drug effects , Interferon-beta/physiology , Models, Immunological , Molecular Targeted Therapy , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2/immunology , Signal Transduction/drug effects , Virus Replication/drug effects
7.
Cells ; 9(8)2020 07 22.
Article in English | MEDLINE | ID: covidwho-669617

ABSTRACT

The ectonucleotidases CD39 and CD73 regulate immune responses by balancing extracellular ATP and adenosine in inflammation and are likely to be involved in the pathophysiology of COVID-19. Here, we analyzed CD39 and CD73 on different lymphocyte populations in a small cohort of COVID-19 patients and in healthy individuals. We describe a significantly lower level of expression of CD73 on cytotoxic lymphocyte populations, including CD8+ T, natural killer T (NKT), and natural killer (NK) cells, during COVID-19. Interestingly, the decrease of CD73 on CD8+ T cells and NKT cells correlated with serum ferritin levels. Furthermore, we observed distinct functional differences between the CD73+ and CD73- subsets of CD8+ T cells and NKT cells with regard to cytokine/toxin secretion. In COVID-19 patients, the majority of the CD73-CD8+ T cells were capable of secreting granzyme B, perforin, tumor necrosis factor (TNF-α) or interferon-gamma (IFN-γ). To conclude, in this first study of CD39 and CD73 expression of lymphocytes in COVID-19, we show that CD8+ T cells and NKT cells lacking CD73 possess a significantly higher cytotoxic effector functionality compared to their CD73+ counterparts. Future studies should investigate differences of cellular CD39 and CD73 expression in patients at different disease stages and their potential as prognostic markers or targets for immunomodulatory therapies.


Subject(s)
5'-Nucleotidase/metabolism , Apyrase/metabolism , Coronavirus Infections/immunology , Killer Cells, Natural/immunology , Natural Killer T-Cells/immunology , Pneumonia, Viral/immunology , T-Lymphocytes, Cytotoxic/immunology , Adenosine/metabolism , Adult , Aged , Betacoronavirus , COVID-19 , Coronavirus Infections/enzymology , Female , GPI-Linked Proteins/metabolism , Granzymes/metabolism , Humans , Inflammation/enzymology , Inflammation/immunology , Interferon-gamma/metabolism , Male , Middle Aged , Pandemics , Perforin/metabolism , Pneumonia, Viral/enzymology , SARS-CoV-2 , Signal Transduction/immunology , T-Lymphocytes, Cytotoxic/metabolism , Tumor Necrosis Factor-alpha/metabolism
8.
Cell Mol Immunol ; 17(9): 995-997, 2020 09.
Article in English | MEDLINE | ID: covidwho-625131

Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/immunology , Molecular Targeted Therapy/methods , Pneumonia, Viral/immunology , Pneumonia/immunology , Severe Acute Respiratory Syndrome/immunology , Antiviral Agents/therapeutic use , Apyrase/antagonists & inhibitors , Apyrase/genetics , Apyrase/immunology , B-Lymphocytes/immunology , B-Lymphocytes/pathology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Betacoronavirus/immunology , COVID-19 , Case-Control Studies , Coronavirus Infections/drug therapy , Coronavirus Infections/genetics , Coronavirus Infections/virology , Gene Expression/drug effects , Humans , Immunologic Factors/therapeutic use , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Killer Cells, Natural/pathology , NK Cell Lectin-Like Receptor Subfamily C/antagonists & inhibitors , NK Cell Lectin-Like Receptor Subfamily C/genetics , NK Cell Lectin-Like Receptor Subfamily C/immunology , Pandemics , Pneumonia/drug therapy , Pneumonia/genetics , Pneumonia/virology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/genetics , Pneumonia, Viral/virology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/genetics , Severe Acute Respiratory Syndrome/virology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/pathology
SELECTION OF CITATIONS
SEARCH DETAIL